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Summary 

Previous work on the scattering of an incident wave field by an array of fixed vertical cylinders is extended to 
calculate the added-mass and damping coefficients for an array of floating axisymmetric bodies. The method is 
based upon a large spacing approximation where diverging waves are replaced by plane waves. It is shown that, 
given the scattering and radiation properties of a single body, the interaction effects within an array can be 
calculated both simply and accurately. 

1. Introduction 

The continuing development of offshore structures has led to an increasing interest in the 
hydrodynamic interactions between neighbouring structures due to wave motions. The 
scattering of an incident wave field by a group of bodies may lead to wave forces on one 
of the bodies that differ significantly from the forces it would experience if in isolation. 
Neglecting viscous effects and using linearised water wave theory, a number of authors 
have computed these interaction effects. Complex body shapes can be handled using finite 
element or source distribution techniques; however, computations involving multiple 
bodies can be prohibitively expensive. Fortunately, many offshore structures are sup- 
ported by fixed or floating axisymmetric elements and the resulting mathematical simplifi- 
cation is of considerable advantage. A number of authors have considered the problem of 
wave scattering within a group of fixed or floating vertical cylinders. For example, Ohkusu 
[1] solved the problem using the method of multiple scattering, where each successive 
scattering event is considered separately, while Matsui and Tamaki [2] used a source 
distribution method. 

Even with the simplification of considering the bodies to be axisymmetric, computation 
of the interactions within a group of two or three bodies remains quite complex. A 
significant step in the simplification of the solution procedure was made by Simon [3]. He 
suggested that a diverging wave, scattered by, or radiated from a body, may be approxi- 
mated at large distances by a plane wave. The easiest way to envisage this is to consider 
circular wave crests. For large radii the crests are locally almost straight when considered 
on an appropriate length scale, namely the wavelength. In addition to the modelling of 
diverging waves by plane waves, Simon's method neglects the local fields which decay 
exponentially away from a body. 
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Simon [3] used his approximate method to calculate the performance of wave-energy 
devices. Though he had no other solution method available for comparison, Simon did 
give an order of magnitude estimate of the errors arising from the plane-wave approxima- 
tion. Mclver and Evans [4] (hereinafter referred to as I) used the plane-wave method to 
make calculations of horizontal wave forces on arrays of fixed, bottom-mounted, surface- 
piercing vertical cylinders. For this problem an alternative, exact method of solution 
(within linear theory) is available. In some of the test comparisons in I, the errors in the 
wave forces calculated using the plane-wave approximation were more than ten per cent 
when the cylinders were closely spaced. However, it was shown in I that this error could 
be reduced to about two per cent, or less, by the incorporation of a simple non-plane 
correction term which involves very little additional effort. In fact, the use of this 
correction term for horizontal forces is necessary to obtain the same degree of accuracy 
given by the plane-wave approximation for vertical forces (see Appendix I). 

It is a feature of the scattering problem for the fixed vertical cylinder considered in I 
that there is no specifically load field decaying exponentially with distance from the body. 
In general such fields are presept, but in the plane-wave method their influence on 
neighbouring bodies is neglected. This has been shown to be valid in two dimensions (e.g. 
Srokosz and Evans [5]), even when the body spacing is small. One aim of the present work 
is to test the plane method when local fields are present in the full linear problem. The 
situation considered is that of a pair of floating docks for which accurate computations 
have been made by Matsui and Tamaki [2]. 

The main purpose of the present work is to provide a more rigorous test of the 
modified plane-wave method as described in Paper I and to show how it can be applied to 
more general problems. In Section 2 the mathematical problem is formulated whilst in 
Section 3 the coupling between a single body and the waves is described. The method of 
solution for the scattering problem is given in Section 4 and the expressions for the 
added-mass and damping coefficients for an array of bodies are derived in Section 5. The 
results for the specific problem of a floating dock are presented in Section 6 and a 
comparison made with the work of Matsui and Tamaki [2]. 

2. Formulation 

Consider a group of N identical bodies floating in water of depth d. The geometry of an 
individual body will not be prescribed as yet, though it will be assumed to be vertically 
axisymmetric. The coordinate system adopted here is that used in I. Thus, Cartesian 
coordinates are chosen with the x- and y-axes in the horizontal plane of the bottom and 
the z-axis directed vertically upwards. A sketch of a horizontal section is given in Fig. 1. 
T h e j  th body has its centre of cross-section at the point (xj, yj); relative to this point the 
field point has coordinates (rj, Oj), where 8j is measured clockwise from the positive y-axis. 
The centre of the k th body has coordinates (Rjk, ajk) relative to t h e j  th body. 

The usual assumptions of linearised water-wave theory are made; i.e. the fluid is taken 
to be inviscid and incompressible and the motion to be irrotational with particle motions 
of small amplitude. The fluid motion may then be described by a velocity potential 
• (x, y, z, t) satisfying Laplace's equation within the fluid and the boundary conditions of 
no flow through solid boundaries, the linearised free-surface condition and a radiation 
condition of outgoing waves at large distances. The motion is also assumed to be 



time-harmonic with radian frequency ~; • will therefore be written as 

• (x,y, z, t )  = R e ( , ( x , y ,  z) e-i '°t ). 
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(1) 

All references to the velocity potential of the flow in the following will concern the 
complex-valued, time-independent, function ~(x, y, z). 

3. Scattering and radiation by a single body 

Before considering the interactions within an array of bodies it is necessary to obtain a 
description of the coupling between the waves and an individual body. The procedure 
adopted follows closely that used by Simon [3]. The oscillations of the bodies will be 
restricted to translational motions in the vertical and horizontal directions. Each mode of 
motion will be denoted by a superfix p; surge motion (parallel to the y-axis) will be 
denoted by p = 1, sway motion (parallel to the x-axis) by p = 2 and heave motion by 
p = 3 .  

Suppose that thej  th body oscillates in the pth mode with an amplitude ~f~, where ~ is a 
typical amplitude of oscillation. Define a complex number D (p) (dependent on frequency) 
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Figure 1. Definition sketch. 

X 



276 

for each mode of oscillation by assuming that the radiation potential takes the form 

{ ( K a ) Z D ~ l ) ~ ) f ( z ) H l ( K r j )  cos 0j, p = 1 (2a) 

= (Ka)ZD~2)~Zf (z )Hl (Kr j )  sin 0j, p = 2 (2b) 

(Ka)ZD(3)~3f ( z )Ho(KS. ) ,  p = 3 (2c) 

in the far field. Here, a is a typical radius of the body, 

f ( z )  g~ cosh Kz 
~o cosh K d '  (3) 

K is the positive real root of 

~o 2 = gK  tanh Kd , (4) 

and H n is the Hankel function of the first kind and order n. Define a second complex 
n u m b e r  E (p) (also dependent on frequency) by assuming that the exciting force on the 
f ixedj  th body in the pth direction, due to an incident plane wave of amplitude A, may be 
written as 

S j  p = ~ p g a 2 a E  (p) (5) 

where p and g are respectively the fluid density and the accelertion due to gravity. For 
p = 1, 2 ~P is to be measured in the direction of wave advance, and for p = 3 vertically. 
The constants  D (p), g (p) are determined by solving the radiation and plane-wave 
scattering problems for a single body. Clearly, if the body is axisymmetric then D (1) equals 
D (2) and E (1) equals E (2). 

As noted by Simon [3] the constant D (p) is related to the corresponding E (p). Let the 
potential q~j represent the scattering by the jth body of a plane wave of amplitude A 
incident from the direction 0j = X + ~r so that in the far field 

~ j = f ( z ) ~  ~ , . i " ( J . ( K s ) + A . H . ( K r j ) ) c o s n ( O s - ~  ). 
n=0 

(6) 

Green's theorem applied to ~j and ~k p over a surface comprising the wetted area of the 
body, the free surface, the horizontal bottom and an enclosing cylinder in the far field 
gives 

sinh 2 Kd 
D (p) = - I 'n 'E(P)  (7a) 

2 K d  + sinh 2 K d '  p = 1, 2, 

and 

sinh 2 Kd 
D°) = - ½~riE(3) 2 K d  + sinh 2Kd"  (7b) 

Equation (7b) is the generalisation for finite depth of the result given by Simon. In 
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addition, an application of Green's theorem to fff  4. ~kf* (* indicates complex conjugate) 
and ~j gives the results derived by Davis [6], 

D (p) = D(P)*(1 4- 2AI) , p = 1.2, (8a) 

and 

D (3) = D(3)*(1 + 2A0), p = 3. (8b) 

4. The scattering problem 

To determine the added-mass and damping coefficients for the array of bodies, a series of 
radiation problems must be solved. Each body in turn is forced to oscillate in a particular 
mode and the resulting hydrodynamic forces on all of the bodies calculated. The radiated 
wave will be scattered successively by each body in the array. To ease the solution of this 
complicated scattering problem it will be assumed that the bodies are widely spaced, i.e. 
for a typical separation distance R, KR >> 1. With this assumption, it was shown in I that 
a diverging wave travelling away from one body may be approximated in the region of a 
neighbouring body by a plane wave together with a non-plane correction term. 

Suppose a plane wave is incident upon the k th body from the direction O k = X, the far 
field potential for the resulting scattered wave may be written 

~,(r k, Ok) = ~ A~i'H.(Kr,) exp(-in(0 k-  X)}. (9) 

In the vicinity of the j  th body this is approximated by a plane wave from the direction of 
the k th body, with amplitude 

Sjk(X)=~k(Rkj, akj) = ~_, A~imHm(KRjk) exp(im(x-a,j)), 
m ~ - - 0 0  

(10) 

and a correction term given by 

Dj* (~,  Oj) = K---~j * ½Sjk(X),,=~oon2i"J.(Krj)exp[in(Oj--a,j)] 

+iTj*(X) .=~-oo ni"J.(Krj) exp[in(Sj-ot,j)]) (11) 

where 

iTj,(X)= ~ mA~i"H,,,(KRj,)exp(im(x-akj)). (12) 

The errors in the potential ~,  arising from this approximation are O((KR)-5/2 ), therefore, 
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as pointed out in an addendum to I, it is consistent to simplify Sjk and Tjk in the first 
correction term by using the first term in the expansion for large argument of the Hankel 
function (Abramowitz and Stegun [7], p. 364). Thus 

Sjk(X)=Ho(KRjk) ~ Ak exp{im(x--aky)) +O((KR) -3/2) 
m ~ --O0 

(13) 

and 

iTjk (X) = Ho(KRjk ) Y'~ mA~exp(im(x-akj)}+O((KR) -'/2) (14) 
/ ' t ' l  ~ - -  O 0  

where 

2 ) 1/2 
Ho(KRjk)=(~-~j k exp {i(KRjk - lrr) } - (15) 

Where the potential ~k is to represent a radiated wave it is sufficient to put X = 0 in Eqns. 
(9)-(14). 

The solution of the scattering problem now proceeds as follows. Let Cj k represent the 
complex amplitude of the plane wave approximation to the total wave field incident upon 
the jth body as a result of scattering and radiation by the k th body. As indicated by 
equation (10) Cjk is found by evaluting the total scattering/radiation potential fOld(he k th 
body at the coordinate centre of the j th body. Thus, if the rn th body oscillates in the qth 
mode with an amplitude 

~q=((Ka)2D(q)) -l, (16) 

then 

q k  = E CklSjk(OQk) "~-~q ( Rmj ,  Olmj)~mk" 
14-k 

(17) 

The first term on the right-hand side of Eqn. (17) results from the scattering of plane 
waves by the k th body and -k ~km is the radiation poential (Eqn. (2)) with the amplitude of 
oscillation given by Eqn. (16). 

In Appendix I it is shown that, with the first correction term applied to the radiated 
wave only, all wave forces are determined with errors of at most O((KR)-2). From Eqn. 
(5) the wave forces are proportional to the plane wave amplitude, hence errors in Cj k of 
O((KR) -2) are admissible. As Cjk itself is at most O((KR)-I/2), Eqn. (13) may be used to 
determine Sjk(oqk ) and ~k q may be simplified by taking two terms in the large argument 
expansion of the Hankel function. Thus 

~a,,,(R,,,j,a,,,j) iH0(KRjk) (1  + 3 8 ~ j k  ) = - -  C O S  Olkj (lSa) 

~(Rmj, a,.j) = _ i H o ( K R j k ) ( 1  + 3 ~ ) s i n  ak~ ' (18b) 
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and 

( i )  
~3m(Rmj, Otmj ) = Ho(KRjk  ) 1 81~Rjk . (18c) 

Note that in I (Eqn. (32)) the radiation potential dTq,, is replaced by a term representing the 
scattering of a plane wave incident from outside the wave group. For that term only it 
would be necessary to include the O((KR)-3/2), terms in the expansion of Sjk (X) given in 
Eqn. (13). 

The N ( N -  1) equations of the form (17) give a set of simultaneous equations for the 
complex plane-wave amplitudes which are readily solved by matrix inversion. 

5. The added-mass and damping coefficients 

Suppose the m th body oscillates in the qth mode with an amplitude given by equation (16), 
the resulting fluid motion will give an exciting force on the j th body in the pth direction 
which will be denoted by Fj~ q. Decompose this force into components in phase with the 
acceleration and velocity of the forced oscillation so that 

Fj~ q= (~o2A;~ + io~BjP~)(~. (19) 

The real matrices A and B are termed respectively the added-mass and damping matrices. 
Non-dimensional forms will be defined by 

A;  q = Mt~ 'q, (20a) 

BP,,, q = o~ M )~ Y~ (20b) 

where M is the mass of fluid displaced by a single body. 
The exciting force on the j  th body follows from Eqn. (5) by summing the effects of the 

incident plane waves together with the first correction terms. A typical plane wave 
incident from the direction of the k th body will have first correction terms associated with 
both scattered and radiated waves. It is shown in Appendix I that it is necessary to 
consider only the first correction for the radiated wave if the wave forces are to have 
errors O ( ( K R ) - 2 ) .  In Appendix II the forces due to the first correction are derived; using 
Eqns. (A2) and (A3) in (5) gives 

Fj~ q = IrogaZ~E(')Cp (21) 

where 

k*j ~ (22a) 
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and 

Cj2= kE.j [Cak sin akj + ~ i  {½S)fl) sin akj - T j y  ) .  cos akj}] (22b) 

C9 = E qk" (22c) 
k ~j 

The quantities S)fl ) and Tj~ q) are found from Eqns. (13) and (14) using the coefficients 
appropriate to the far-field radiation potential for oscillations in the qth mode as given by 
Eqns. (2). Hence, 

(23a) 

(23b) 

(23c) 

Ss.~) = Till)= - iHo(KRjk)  cos akj, 

SS~)= -~ Tj.~ 2)= -iHo(KRik ) sin akj, 

S) 3, = Ho ( KR jk ), 

~ ? ) = 0 .  (23d) 

and 

The final expression for the non-dimensional added-mass and damping coefficients is, 
from Eqns. (19), (20) and (21), 

• Pq ~rpga2 ( g a ) 2 O ( q ) E ( P ) q  P, (24) 
~;qm -]- l~kjm w2 M 

provided m 4:j. When j = m, i.e. body j is itself oscillating, the single-body added-mass 
and damping coefficients must be added to the values given by Eqn. (24). Clearly, there 
will be no first correction terms in this case. 

6. Results 

To test the present method a pair of floating docks is considered. Matsui and Tamaki [2] 
have calculated the added-mass and damping coefficients for such a system using a 
potentially more accurate source-distribution technique. They considered cylindrical docks 
of radius a = 0.1d and draught 0.05d, where d is the water depth. The characteristics of a 
single body required for the present work were found using the methods of Garrett [7] (the 
scattering problem) and Yeung [8] (the radiation problem). Checks on the accuracy of 
these data were made using the relations (7) and (8). In general, the values of D (p) 
calculated directly from the radiation problem and indirectly from the scattering problem 
using equations (7) differential by one or two percent at most. The infinite series involving 
the scattering coefficients A~ in equations (13) and (14) were truncated by setting to zero 
any coefficient less than 10 -1° . 

The comparison with the work of Matsui and Tamaki [2] is made in Figs. 2-4. The 
curves of Matsui and Tamaki were obtained by tracing photographic enlargements of their 
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original figures. The cross-term added-mass and Ramping coefficients are presented for 
sway/sway, heave/heave and sway/heave interactions. That is, for example, the hydrody- 
namic coefficients given in Fig. 2 describe the inline force on body 1 due to the inline 
motion of body 2. Results are presented for two separation distances R12--3a and 
R12 = 5a. In general the agreement between the two methods is excellent. Notable 
discrepancies occur in the added-mass curves for R~2 = 3a at small wavenumbers. This is 
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Figure 2. Hydrodynamic coefficients describing inline forces on body 1 due to inline motion of body 2. x ,  O: 
plane-wave method; : Matsui and Tamaki. 
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not surprising as KR12 is then also Small and the assumptions of the large spacing 
approximation are violated. Indeed, it is remarkable that the agreement is generally good 
for KR12- 1, confirming the results of I. The discrepancies in the heave/heave added 
mass results for R~2 = 3a (Fig. 3a) have no obvious explanation. 

The combined results of the present work and 1 strongly suggest that the plane-wave 
method gives accurate results for the interactions within groups of axisymmetric bodies for 
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Figure 3. Hydrodynamic coefficients describing the heave forces in body 1 due to the heave motion of body 2. 
× ,  o: plane-wave method; - - ,  - - - - - :  Matsui ,~nd Tamaki. 
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most useful parameter  ranges. Provided the scattering and radiation properties of a single 
body are known, the calculation of the interaction effects is quite straightforward. The 
procedure involves the summation of series of elementary functions and the inversion of a 
single matrix equation. The present work has considered a body shape where the 
single-body characteristics are readily calculated. However, in principle, the necessary data 
may be obtained for any axisymmetric body using, for example, a source-distribution 
method. 
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F igure  4. H y d r o d y n a m i c  coeff icients  descr ib ing  the heave forces on body  1 due  to the in l ine  mo t ion  of  body  2. 
× ,  O: p lane-wave  method ;  - - ,  - -  - -  - - :  Matsu i  and  Tamaki .  
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Appendix I: Errors arising from the large spacing approximation 

For  simplicity consider the case of two bodies. Suppose a wave field emanates from body I 
having a potential given by Eqn. (9). Equations (10-12) are used to approximate the wave 
field in the region of body 2 with errors in the potential of O(~-5/2), where ~" = KR12. The 
heave force on the body 2 is proportional to the n = 0 term while the inline horizontal 
force is proportional to the difference in the n = _ 1 terms; both are O(~-1/2). As noted 
by Simon [3], the heave force is given exactly by the plane wave approximation only. The 
horizontal force, however, has errors O(~ "-5/2) provided the first correction term is 
included. If  the plane-wave amplitude, Eqn. (10), is expanded to the second term in the 
large-argument expansion of the Hankel function (giving the same accuracy as the first 
correction) the errors in the heave force are also O(~-5/2). 

The wave field incident upon body 2 is back-scattered to give a force on body 1. In his 
Appendix, Simon [3] showed that the heave force on body 1 is O(~- l ) ,  with errors of 
O(~ -2)  if the plane-wave approximation only is used. A similar calculation shows that the 
inline force is also O(~ "-a) with errors O(~-2).  A further scattering of the wave field by 
body 1 leads to forces on body 2 of O(~ "-3/2) with errors of 0(~ -5/z) if the plane-wave 
approximation is used. Each successive scattering across the system leads to forces 
reduced in magnitude by a factor of O(~-1/2), hence further scattering lead to forces of 
the same size as the previously obtained errors and need not be considered. 

In summary, the forces on body 2 before scattering are O(~ -1/2) with errors O(~ -5/2) 
when the first correction is used. Accounting for scattering gives additional forces of 
O(~-3/2)  with errors of O(~-s /2)  using the plane-wave approximation only. The forces on 
body 1 are O(~ -1) with errors O(~-2)  from the plane-wave approximation. Hence, for the 
radiation problem, the wave forces can be found to within errors of O(~-2),  or less, using 
the plane-wave approximation provided the first correction is applied to the radiated wave 
before scattering occurs. 

Appendix II: Wave forces due to the first correction 

It  is assumed that the force on a single body due to an incident plane wave is known, i.e. 
the constants E ~p) of Eqn. (5) are known. Consider the first correction term given by 
equation (11). This is a non-plane wave field, however, the following argument shows that 
the vertical and horizontal forces on an axisymmetric body can be deduced immediately 
once the forces due to a plane wave are known. 

Because of the orthogonality properties of the exponential functions in the expansion of 
Djk, for an axisymmetric body, the vertical force depends only on the n = 0 term while the 
horizontal forces depend on the n = +_ 1 terms. The first correction has no n = 0 term and 
so does not contribute to the vertical force. Now, Djk has the same n = +_ 1 components as 
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the  po t e n t i a l  

O0 

E i"Jn(Krj) e x p ( i n ( O j - - a k , ) }  
r l =  - - 0 0  

+Tjk(X ) ~ i " J , , ( K r j ) e x p ( i n ( S j - a k j + ½ c r ) }  ) (A1) 
I ' l ~  - - 0 0  

which  is a c o m b i n a t i o n  of  p l a n e  waves  t rave l l ing  in  the  d i r ec t ions  0j = Otkj a n d  0j = ak j  - 
r r / 2 .  Thus ,  if F is the  i n l i n e  force due  to a n  i n c i d e n t  p l a n e  wave  of  u n i t  a m p l i t u d e ,  the  
ho r i zon t a l  forces o n  the j th b o d y  due  to Dj'k, a n d  hence  Djk, are 

i 
~ ' ) =  KRj ,  (½Sjk(X) COS a , j  + ~ k ( X )  s in  a , j  } F (A2)  

a n d  

i 
X)2)=  KRjl, (½Sjk(X) sin a k j - -  Tjk(X ) cos ak j  ) F .  (A3)  

b y  s imple  r e so lu t i on  of forces. 
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